Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Eur Spine J ; 33(3): 1213-1222, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38217717

RESUMEN

PURPOSE: We surveyed the treatment of acute spinal cord injuries in the UK and compared current practices with 10 years ago. METHODS: A questionnaire survey was conducted amongst neurosurgeons, neuroanaesthetists, and neurointensivists that manage patients with acute spinal cord injuries. The survey gave two scenarios (complete and incomplete cervical spinal cord injuries). We obtained opinions on the speed of transfer, timing and aim of surgery, choice of anaesthetic, intraoperative monitoring, targets for physiological parameters, and drug treatments. RESULTS: We received responses from 78.6% of UK units that manage acute spinal cord injuries (33 neurosurgeons, 56 neuroanaesthetists/neurointensivists). Most neurosurgeons operate within 12 h for incomplete (82%) and complete (64%) injuries. There is a significant shift from 10 years ago, when only 61% (incomplete) and 30% (complete) of neurosurgeons operated within 12 h. The preferred anaesthetic technique in 2022 is total intravenous anaesthesia (TIVA), used by 69% of neuroanaesthetists. Significantly more intraoperative monitoring is now used at least sometimes, including bispectral index (91%), non-invasive cardiac output (62%), and neurophysiology (73-77%). Methylprednisolone is no longer used by surgeons. Achieving at least 80 mmHg mean arterial blood pressure is recommended by 70% neurosurgeons, 62% neuroanaesthetists, and 75% neurointensivists. CONCLUSIONS: Between 2012 and 2022, there was a paradigm shift in managing acute spinal cord injuries in the UK with earlier surgery and more intraoperative monitoring. Variability in practice persists due to lack of high-quality evidence and consensus guidelines.


Asunto(s)
Anestésicos , Traumatismos de la Médula Espinal , Humanos , Traumatismos de la Médula Espinal/epidemiología , Traumatismos de la Médula Espinal/cirugía , Metilprednisolona/uso terapéutico , Cuidados Críticos , Anestésicos/uso terapéutico , Reino Unido/epidemiología
2.
Crit Care ; 27(1): 362, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37730639

RESUMEN

OBJECTIVE: This study aims to determine the relationship between spinal cord perfusion pressure (SCPP) and breathing function in patients with acute cervical traumatic spinal cord injuries. METHODS: We included 8 participants without cervical TSCI plus 13 patients with cervical traumatic spinal cord injuries, American Spinal Injury Association Impairment Scale grades A-C. In the TSCI patients, we monitored intraspinal pressure from the injury site for up to a week and computed the SCPP as mean arterial pressure minus intraspinal pressure. Breathing function was quantified by diaphragmatic electromyography using an EDI (electrical activity of the diaphragm) nasogastric tube as well as by ultrasound of the diaphragm and the intercostal muscles performed when sitting at 20°-30°. RESULTS: We analysed 106 ultrasound examinations (total 1370 images/videos) and 198 EDI recordings in the patients with cervical traumatic spinal cord injuries. During quiet breathing, low SCPP (< 60 mmHg) was associated with reduced EDI-peak (measure of inspiratory effort) and EDI-min (measure of the tonic activity of the diaphragm), which increased and then plateaued at SCPP 60-100 mmHg. During quiet and deep breathing, the diaphragmatic thickening fraction (force of diaphragmatic contraction) plotted versus SCPP had an inverted-U relationship, with a peak at SCPP 80-90 mmHg. Diaphragmatic excursion (up and down movement of the diaphragm) during quiet breathing did not correlate with SCPP, but diaphragmatic excursion during deep breathing plotted versus SCPP had an inverse-U relationship with a peak at SCPP 80-90 mmHg. The thickening fraction of the intercostal muscles plotted versus SCPP also had inverted-U relationship, with normal intercostal function at SCPP 80-100 mmHg, but failure of the upper and middle intercostals to contract during inspiration (i.e. abdominal breathing) at SCPP < 80 or > 100 mmHg. CONCLUSIONS: After acute, cervical traumatic spinal cord injuries, breathing function depends on the SCPP. SCPP 80-90 mmHg correlates with optimum diaphragmatic and intercostal muscle function. Our findings raise the possibility that intervention to maintain SCPP in this range may accelerate ventilator liberation which may reduce stay in the neuro-intensive care unit.


Asunto(s)
Traumatismos de la Médula Espinal , Humanos , Perfusión , Respiración , Diafragma/diagnóstico por imagen
3.
Trials ; 24(1): 497, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37550727

RESUMEN

BACKGROUND: Cervical traumatic spinal cord injury is a devastating condition. Current management (bony decompression) may be inadequate as after acute severe TSCI, the swollen spinal cord may become compressed against the surrounding tough membrane, the dura. DISCUS will test the hypothesis that, after acute, severe traumatic cervical spinal cord injury, the addition of dural decompression to bony decompression improves muscle strength in the limbs at 6 months, compared with bony decompression alone. METHODS: This is a prospective, phase III, multicenter, randomized controlled superiority trial. We aim to recruit 222 adults with acute, severe, traumatic cervical spinal cord injury with an American Spinal Injury Association Impairment Scale grade A, B, or C who will be randomized 1:1 to undergo bony decompression alone or bony decompression with duroplasty. Patients and outcome assessors are blinded to study arm. The primary outcome is change in the motor score at 6 months vs. admission; secondary outcomes assess function (grasp, walking, urinary + anal sphincters), quality of life, complications, need for further surgery, and mortality, at 6 months and 12 months from randomization. A subgroup of at least 50 patients (25/arm) also has observational monitoring from the injury site using a pressure probe (intraspinal pressure, spinal cord perfusion pressure) and/or microdialysis catheter (cord metabolism: tissue glucose, lactate, pyruvate, lactate to pyruvate ratio, glutamate, glycerol; cord inflammation: tissue chemokines/cytokines). Patients are recruited from the UK and internationally, with UK recruitment supported by an integrated QuinteT recruitment intervention to optimize recruitment and informed consent processes. Estimated study duration is 72 months (6 months set-up, 48 months recruitment, 12 months to complete follow-up, 6 months data analysis and reporting results). DISCUSSION: We anticipate that the addition of duroplasty to standard of care will improve muscle strength; this has benefits for patients and carers, as well as substantial gains for health services and society including economic implications. If the addition of duroplasty to standard treatment is beneficial, it is anticipated that duroplasty will become standard of care. TRIAL REGISTRATION: IRAS: 292031 (England, Wales, Northern Ireland) - Registration date: 24 May 2021, 296518 (Scotland), ISRCTN: 25573423 (Registration date: 2 June 2021); ClinicalTrials.gov number : NCT04936620 (Registration date: 21 June 2021); NIHR CRN 48627 (Registration date: 24 May 2021).


Asunto(s)
Médula Cervical , Traumatismos de la Médula Espinal , Adulto , Humanos , Estudios Prospectivos , Calidad de Vida , Médula Espinal , Traumatismos de la Médula Espinal/diagnóstico , Traumatismos de la Médula Espinal/cirugía , Lactatos , Resultado del Tratamiento , Ensayos Clínicos Controlados Aleatorios como Asunto , Estudios Multicéntricos como Asunto , Ensayos Clínicos Fase III como Asunto
4.
J Neurotrauma ; 40(23-24): 2680-2693, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37476968

RESUMEN

This study aims to determine the effect of neurogenic, inflammatory, and infective fevers on acutely injured human spinal cord. In 86 patients with acute, severe traumatic spinal cord injuries (TSCIs; American Spinal Injury Association Impairment Scale (AIS), grades A-C) we monitored (starting within 72 h of injury, for up to 1 week) axillary temperature as well as injury site cord pressure, microdialysis (MD), and oxygen. High fever (temperature ≥38°C) was classified as neurogenic, infective, or inflammatory. The effect of these three fever types on injury-site physiology, metabolism, and inflammation was studied by analyzing 2864 h of intraspinal pressure (ISP), 1887 h of MD, and 840 h of tissue oxygen data. High fever occurred in 76.7% of the patients. The data show that temperature was higher in neurogenic than non-neurogenic fever. Neurogenic fever only occurred with injuries rostral to vertebral level T4. Compared with normothermia, fever was associated with reduced tissue glucose (all fevers), increased tissue lactate to pyruvate ratio (all fevers), reduced tissue oxygen (neurogenic + infective fevers), and elevated levels of pro-inflammatory cytokines/chemokines (infective fever). Spinal cord metabolic derangement preceded the onset of infective but not neurogenic or inflammatory fever. By considering five clinical characteristics (level of injury, axillary temperature, leukocyte count, C-reactive protein [CRP], and serum procalcitonin [PCT]), it was possible to confidently distinguish neurogenic from non-neurogenic high fever in 59.3% of cases. We conclude that neurogenic, infective, and inflammatory fevers occur commonly after acute, severe TSCI and are detrimental to the injured spinal cord with infective fever being the most injurious. Further studies are required to determine whether treating fever improves outcome. Accurately diagnosing neurogenic fever, as described, may reduce unnecessary septic screens and overuse of antibiotics in these patients.


Asunto(s)
Traumatismos de la Médula Espinal , Médula Espinal , Humanos , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Temperatura Corporal , Inflamación , Oxígeno
6.
Crit Care Med ; 50(5): e477-e486, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35029868

RESUMEN

OBJECTIVES: To determine the feasibility of monitoring tissue oxygen tension from the injury site (pscto2) in patients with acute, severe traumatic spinal cord injuries. DESIGN: We inserted at the injury site a pressure probe, a microdialysis catheter, and an oxygen electrode to monitor for up to a week intraspinal pressure (ISP), spinal cord perfusion pressure (SCPP), tissue glucose, lactate/pyruvate ratio (LPR), and pscto2. We analyzed 2,213 hours of such data. Follow-up was 6-28 months postinjury. SETTING: Single-center neurosurgical and neurocritical care units. SUBJECTS: Twenty-six patients with traumatic spinal cord injuries, American spinal injury association Impairment Scale A-C. Probes were inserted within 72 hours of injury. INTERVENTIONS: Insertion of subarachnoid oxygen electrode (Licox; Integra LifeSciences, Sophia-Antipolis, France), pressure probe, and microdialysis catheter. MEASUREMENTS AND MAIN RESULTS: pscto2 was significantly influenced by ISP (pscto2 26.7 ± 0.3 mm Hg at ISP > 10 mmHg vs pscto2 22.7 ± 0.8 mm Hg at ISP ≤ 10 mm Hg), SCPP (pscto2 26.8 ± 0.3 mm Hg at SCPP < 90 mm Hg vs pscto2 32.1 ± 0.7 mm Hg at SCPP ≥ 90 mm Hg), tissue glucose (pscto2 26.8 ± 0.4 mm Hg at glucose < 6 mM vs 32.9 ± 0.5 mm Hg at glucose ≥ 6 mM), tissue LPR (pscto2 25.3 ± 0.4 mm Hg at LPR > 30 vs pscto2 31.3 ± 0.3 mm Hg at LPR ≤ 30), and fever (pscto2 28.8 ± 0.5 mm Hg at cord temperature 37-38°C vs pscto2 28.7 ± 0.8 mm Hg at cord temperature ≥ 39°C). Tissue hypoxia also occurred independent of these factors. Increasing the Fio2 by 0.48 increases pscto2 by 71.8% above baseline within 8.4 minutes. In patients with motor-incomplete injuries, fluctuations in pscto2 correlated with fluctuations in limb motor score. The injured cord spent 11% (39%) hours at pscto2 less than 5 mm Hg (< 20 mm Hg) in patients with motor-complete outcomes, compared with 1% (30%) hours at pscto2 less than 5 mm Hg (< 20 mm Hg) in patients with motor-incomplete outcomes. Complications were cerebrospinal fluid leak (5/26) and wound infection (1/26). CONCLUSIONS: This study lays the foundation for measuring and altering spinal cord oxygen at the injury site. Future studies are required to investigate whether this is an effective new therapy.


Asunto(s)
Presión del Líquido Cefalorraquídeo , Traumatismos de la Médula Espinal , Glucosa , Humanos , Oxígeno , Médula Espinal
7.
J Neurosurg Spine ; 36(1): 145-152, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34479207

RESUMEN

OBJECTIVE: The authors sought to investigate the effect of acute, severe traumatic spinal cord injury on the urinary bladder and the hypothesis that increasing the spinal cord perfusion pressure improves bladder function. METHODS: In 13 adults with traumatic spinal cord injury (American Spinal Injury Association Impairment Scale grades A-C), a pressure probe and a microdialysis catheter were placed intradurally at the injury site. We varied the spinal cord perfusion pressure and performed filling cystometry. Patients were followed up for 12 months on average. RESULTS: The 13 patients had 63 fill cycles; 38 cycles had unfavorable urodynamics, i.e., dangerously low compliance (< 20 mL/cmH2O), detrusor overactivity, or dangerously high end-fill pressure (> 40 cmH2O). Unfavorable urodynamics correlated with periods of injury site hypoperfusion (spinal cord perfusion pressure < 60 mm Hg), hyperperfusion (spinal cord perfusion pressure > 100 mm Hg), tissue glucose < 3 mM, and tissue lactate to pyruvate ratio > 30. Increasing spinal cord perfusion pressure from 67.0 ± 2.3 mm Hg (average ± SE) to 92.1 ± 3.0 mm Hg significantly reduced, from 534 to 365 mL, the median bladder volume at which the desire to void was first experienced. All patients with dangerously low average initial bladder compliance (< 20 mL/cmH2O) maintained low compliance at follow-up, whereas all patients with high average initial bladder compliance (> 100 mL/cmH2O) maintained high compliance at follow-up. CONCLUSIONS: We conclude that unfavorable urodynamics develop within days of traumatic spinal cord injury, thus challenging the prevailing notion that the detrusor is initially acontractile. Urodynamic studies performed acutely identify patients with dangerously low bladder compliance likely to benefit from early intervention. At this early stage, bladder function is dynamic and is influenced by fluctuations in the physiology and metabolism at the injury site; therefore, optimizing spinal cord perfusion is likely to improve urological outcome in patients with acute severe traumatic spinal cord injury.


Asunto(s)
Flujo Sanguíneo Regional/fisiología , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/fisiopatología , Médula Espinal/irrigación sanguínea , Vejiga Urinaria Neurogénica/etiología , Urodinámica/fisiología , Adulto , Anciano , Presión Sanguínea/fisiología , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Factores de Riesgo , Vejiga Urinaria Neurogénica/fisiopatología , Vejiga Urinaria Neurogénica/prevención & control , Adulto Joven
8.
Neurocrit Care ; 35(3): 794-805, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34100181

RESUMEN

BACKGROUND: Acute, severe traumatic spinal cord injury often causes fecal incontinence. Currently, there are no treatments to improve anal function after traumatic spinal cord injury. Our study aims to determine whether, after traumatic spinal cord injury, anal function can be improved by interventions in the neuro-intensive care unit to alter the spinal cord perfusion pressure at the injury site. METHODS: We recruited a cohort of patients with acute, severe traumatic spinal cord injuries (American Spinal Injury Association Impairment Scale grades A-C). They underwent surgical fixation within 72 h of the injury and insertion of an intrathecal pressure probe at the injury site to monitor intraspinal pressure and compute spinal cord perfusion pressure as mean arterial pressure minus intraspinal pressure. Injury-site monitoring was performed at the neuro-intensive care unit for up to a week after injury. During monitoring, anorectal manometry was also conducted over a range of spinal cord perfusion pressures. RESULTS: Data were collected from 14 patients with consecutive traumatic spinal cord injury aged 22-67 years. The mean resting anal pressure was 44 cmH2O, which is considerably lower than the average for healthy patients, previously reported at 99 cmH2O. Mean resting anal pressure versus spinal cord perfusion pressure had an inverted U-shaped relation (Ȓ2 = 0.82), with the highest resting anal pressures being at a spinal cord perfusion pressure of approximately 100 mmHg. The recto-anal inhibitory reflex (transient relaxation of the internal anal sphincter during rectal distension), which is important for maintaining fecal continence, was present in 90% of attempts at high (90 mmHg) spinal cord perfusion pressure versus 70% of attempts at low (60 mmHg) spinal cord perfusion pressure (P < 0.05). During cough, the rise in anal pressure from baseline was 51 cmH2O at high (86 mmHg) spinal cord perfusion pressure versus 37 cmH2O at low (62 mmHg) spinal cord perfusion pressure (P < 0.0001). During anal squeeze, higher spinal cord perfusion pressure was associated with longer endurance time and spinal cord perfusion pressure of 70-90 mmHg was associated with stronger squeeze. There were no complications associated with anorectal manometry. CONCLUSIONS: Our data indicate that spinal cord injury causes severe disruption of anal sphincter function. Several key components of anal continence (resting anal pressure, recto-anal inhibitory reflex, and anal pressure during cough and squeeze) markedly improve at higher spinal cord perfusion pressure. Maintaining too high of spinal cord perfusion pressure may worsen anal continence.


Asunto(s)
Incontinencia Fecal , Traumatismos de la Médula Espinal , Adulto , Anciano , Canal Anal , Incontinencia Fecal/complicaciones , Humanos , Persona de Mediana Edad , Perfusión/efectos adversos , Adulto Joven
9.
Neurocrit Care ; 34(1): 121-129, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32435965

RESUMEN

BACKGROUND/OBJECTIVE: We have recently developed monitoring from the injury site in patients with acute, severe traumatic spinal cord injuries to facilitate their management in the intensive care unit. This is analogous to monitoring from the brain in patients with traumatic brain injuries. This study aims to determine whether, after traumatic spinal cord injury, fluctuations in the monitored physiological, and metabolic parameters at the injury site are causally linked to changes in limb power. METHODS: This is an observational study of a cohort of adult patients with motor-incomplete spinal cord injuries, i.e., grade C American spinal injuries association Impairment Scale. A pressure probe and a microdialysis catheter were placed intradurally at the injury site. For up to a week after surgery, we monitored limb power, intraspinal pressure, spinal cord perfusion pressure, and tissue lactate-to-pyruvate ratio. We established correlations between these variables and performed Granger causality analysis. RESULTS: Nineteen patients, aged 22-70 years, were recruited. Motor score versus intraspinal pressure had exponential decay relation (intraspinal pressure rise to 20 mmHg was associated with drop of 11 motor points, but little drop in motor points as intraspinal pressure rose further, R2 = 0.98). Motor score versus spinal cord perfusion pressure (up to 110 mmHg) had linear relation (1.4 motor point rise/10 mmHg rise in spinal cord perfusion pressure, R2 = 0.96). Motor score versus lactate-to-pyruvate ratio (greater than 20) also had linear relation (0.8 motor score drop/10-point rise in lactate-to-pyruvate ratio, R2 = 0.92). Increased intraspinal pressure Granger-caused increase in lactate-to-pyruvate ratio, decrease in spinal cord perfusion, and decrease in motor score. Increased spinal cord perfusion Granger-caused decrease in lactate-to-pyruvate ratio and increase in motor score. Increased lactate-to-pyruvate ratio Granger-caused increase in intraspinal pressure, decrease in spinal cord perfusion, and decrease in motor score. Causality analysis also revealed multiple vicious cycles that amplify insults to the cord thus exacerbating cord damage. CONCLUSION: Monitoring intraspinal pressure, spinal cord perfusion pressure, lactate-to-pyruvate ratio, and intervening to normalize these parameters are likely to improve limb power.


Asunto(s)
Traumatismos de la Médula Espinal , Adulto , Humanos , Lactatos , Perfusión , Piruvatos , Médula Espinal
10.
Sci Rep ; 10(1): 8125, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32415143

RESUMEN

In five patients with acute, severe thoracic traumatic spinal cord injuries (TSCIs), American spinal injuries association Impairment Scale (AIS) grades A-C, we induced cord hypothermia (33 °C) then rewarming (37 °C). A pressure probe and a microdialysis catheter were placed intradurally at the injury site to monitor intraspinal pressure (ISP), spinal cord perfusion pressure (SCPP), tissue metabolism and inflammation. Cord hypothermia-rewarming, applied to awake patients, did not cause discomfort or neurological deterioration. Cooling did not affect cord physiology (ISP, SCPP), but markedly altered cord metabolism (increased glucose, lactate, lactate/pyruvate ratio (LPR), glutamate; decreased glycerol) and markedly reduced cord inflammation (reduced IL1ß, IL8, MCP, MIP1α, MIP1ß). Compared with pre-cooling baseline, rewarming was associated with significantly worse cord physiology (increased ICP, decreased SCPP), cord metabolism (increased lactate, LPR; decreased glucose, glycerol) and cord inflammation (increased IL1ß, IL8, IL4, IL10, MCP, MIP1α). The study was terminated because three patients developed delayed wound infections. At 18-months, two patients improved and three stayed the same. We conclude that, after TSCI, hypothermia is potentially beneficial by reducing cord inflammation, though after rewarming these benefits are lost due to increases in cord swelling, ischemia and inflammation. We thus urge caution when using hypothermia-rewarming therapeutically in TSCI.


Asunto(s)
Citocinas/metabolismo , Hipotermia Inducida/métodos , Inflamación/terapia , Recalentamiento/métodos , Traumatismos de la Médula Espinal/complicaciones , Adolescente , Adulto , Anciano , Presión del Líquido Cefalorraquídeo , Femenino , Humanos , Inflamación/etiología , Inflamación/patología , Masculino , Persona de Mediana Edad , Monitoreo Fisiológico , Estudios Prospectivos , Adulto Joven
11.
J Neurotrauma ; 37(9): 1156-1164, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32024422

RESUMEN

In some centers, monitoring lumbar cerebrospinal fluid (CSF) is used to guide management of patients with acute traumatic spinal cord injuries (TSCI) and draining lumbar CSF to improve spinal cord perfusion. Here, we investigate whether the lumbar CSF provides accurate information about the injury site and the effect of draining lumbar CSF on injury site perfusion. In 13 TSCI patients, we simultaneously monitored lumbar CSF pressure (CSFP) and intraspinal pressure (ISP) from the injury site. Using CSFP or ISP, we computed spinal cord perfusion pressure (SCPP), vascular pressure reactivity index (sPRx) and optimum SCPP (SCPPopt). We also assessed the effect on ISP of draining 10 mL CSF. Metabolites at the injury site were compared with metabolites in the lumbar CSF. We found that ISP was pulsatile, but CSFP had low pulse pressure and was non-pulsatile 21% of the time. There was weak or no correlation between CSFP versus ISP (R = -0.11), SCPP(csf) versus SCPP(ISP) (R = 0.39), and sPRx(csf) versus sPRx(ISP) (R = 0.45). CSF drainage caused no significant change in ISP in 7/12 patients and a significant drop of <5 mm Hg in 4/12 patients and of ∼8 mm Hg in 1/12 patients. Metabolite concentrations in the CSF versus the injury site did not correlate for lactate (R = 0.00), pyruvate (R = -0.12) or lactate-to-pyruvate ratio (R = -0.05) with weak correlations noted for glucose (R = 0.31), glutamate (R = 0.61), and glycerol (R = 0.56). We conclude that, after a severe TSCI, monitoring from the lumbar CSF provides only limited information about the injury site and that lumbar CSF drainage does not effectively reduce ISP in most patients.


Asunto(s)
Presión del Líquido Cefalorraquídeo/fisiología , Drenaje/métodos , Monitoreo Fisiológico/métodos , Traumatismos de la Médula Espinal/líquido cefalorraquídeo , Traumatismos de la Médula Espinal/diagnóstico por imagen , Punción Espinal/métodos , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Traumatismos de la Médula Espinal/terapia
12.
J Crit Care ; 56: 145-151, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31901650

RESUMEN

PURPOSE: To investigate the effect of increasing spinal cord perfusion pressure (SCPP) on sensory evoked potentials (SEPs) and injury site metabolism in patients with severe traumatic spinal cord injury TSCI. MATERIALS AND METHODS: In 12 TSCI patients we placed a pressure probe, a microdialysis catheter and a strip electrode with 8 contacts on the surface of the injured cord. We monitored SCPP, lactate-to-pyruvate ratio (LPR) and SEPs (after median or posterior tibial nerve stimulation). RESULTS: Increase in SCPP by ~20 mmHg produced a heterogeneous response in SEPs and injury site metabolism. In some patients, SEP amplitudes increased and the LPR decreased indicating improved tissue metab olism. In others, SEP amplitudes decreased and the LPR increased indicating more impaired metabolism. Compared with patients who did not improve at follow-up, those who improved had significantly more electrode contacts with SEP amplitude increase in response to increasing SCPP. CONCLUSIONS: Increasing SCPP after acute, severe TSCI may be beneficial (if associated with increase in SEP amplitude) or detrimental (if associated with decrease in SEP amplitude). Our findings support individualized management of patients with acute, severe TSCI guided by monitoring from the injury site rather than applying universal blood pressure targets as is current clinical practice.


Asunto(s)
Presión del Líquido Cefalorraquídeo , Potenciales Evocados Somatosensoriales , Traumatismos de la Médula Espinal/diagnóstico , Traumatismos de la Médula Espinal/fisiopatología , Médula Espinal/fisiopatología , Adulto , Presión Sanguínea , Cateterismo , Terapia por Estimulación Eléctrica , Electrofisiología , Femenino , Humanos , Ácido Láctico/sangre , Imagen por Resonancia Magnética , Masculino , Microdiálisis , Persona de Mediana Edad , Monitoreo Fisiológico , Perfusión , Presión , Ácido Pirúvico/sangre , Nervio Tibial , Tomografía Computarizada por Rayos X , Adulto Joven
13.
Neurocrit Care ; 30(2): 421-428, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30328047

RESUMEN

BACKGROUND/OBJECTIVES: We recently developed techniques to monitor intraspinal pressure (ISP) and spinal cord perfusion pressure (SCPP) from the injury site to compute the optimum SCPP (SCPPopt) in patients with acute traumatic spinal cord injury (TSCI). We hypothesized that ISP and SCPPopt can be predicted using clinical factors instead of ISP monitoring. METHODS: Sixty-four TSCI patients, grades A-C (American spinal injuries association Impairment Scale, AIS), were analyzed. For 24 h after surgery, we monitored ISP and SCPP and computed SCPPopt (SCPP that optimizes pressure reactivity). We studied how well 28 factors correlate with mean ISP or SCPPopt including 7 patient-related, 3 injury-related, 6 management-related, and 12 preoperative MRI-related factors. RESULTS: All patients underwent surgery to restore normal spinal alignment within 72 h of injury. Fifty-one percentage had U-shaped sPRx versus SCPP curves, thus allowing SCPPopt to be computed. Thirteen percentage, all AIS grade A or B, had no U-shaped sPRx versus SCPP curves. Thirty-six percentage (22/64) had U-shaped sPRx versus SCPP curves, but the SCPP did not reach the minimum of the curve, and thus, an exact SCPPopt could not be calculated. In total 5/28 factors were associated with lower ISP: older age, excess alcohol consumption, nonconus medullaris injury, expansion duroplasty, and less intraoperative bleeding. In a multivariate logistic regression model, these 5 factors predicted ISP as normal or high with 73% accuracy. Only 2/28 factors correlated with lower SCPPopt: higher mean ISP and conus medullaris injury. In an ordinal multivariate logistic regression model, these 2 factors predicted SCPPopt as low, medium-low, medium-high, or high with only 42% accuracy. No MRI factors correlated with ISP or SCPPopt. CONCLUSIONS: Elevated ISP can be predicted by clinical factors. Modifiable factors that may lower ISP are: reducing surgical bleeding and performing expansion duroplasty. No factors accurately predict SCPPopt; thus, invasive monitoring remains the only way to estimate SCPPopt.


Asunto(s)
Circulación Sanguínea/fisiología , Presión del Líquido Cefalorraquídeo/fisiología , Monitorización Neurofisiológica/métodos , Traumatismos de la Médula Espinal/diagnóstico , Traumatismos de la Médula Espinal/fisiopatología , Médula Espinal/irrigación sanguínea , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Traumatismos de la Médula Espinal/cirugía , Adulto Joven
14.
J Neurotrauma ; 36(6): 919-929, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30351245

RESUMEN

The effect of traumatic spinal cord injury (TSCI) on spinal cord blood flow (SCBF) in humans is unknown. Whether intervention to achieve the recommended mean arterial pressure (MAP) guideline of 85-90 mm Hg improves SCBF is also unclear. Here, we use laser speckle contrast imaging intraoperatively to visualize blood flow at the injury site in 22 patients with acute, severe spinal cord injuries (American Spinal Injuries Association Impairment Scale, grades A-C). In 17 of 22 patients, injury-site metabolism was also monitored with a microdialysis catheter placed intradurally on the surface of the injured cord. We observed three different SCBF patterns, characterized by distinct injury-site metabolic signatures, which we term necrosis-penumbra, hyperperfusion, and patchy-perfusion. The necrosis-penumbra pattern, only observed in thoracic injuries, had a core of low blood flow (necrosis) with regions of intermediate blood flow on either side (penumbra). The hyperperfusion pattern, only observed in cervical injuries, had very high blood flow throughout the injury site. The patchy-perfusion pattern, found in cervical and thoracic injuries, had irregular regions of low, intermediate, and high blood flow. Though intervention to increase MAP by 20 mm Hg increased overall blood flow at the injury site, in 5 of 22 patients, blood flow increased in some regions, but, surprisingly, decreased in other regions. We term this phenomenon blood pressure-induced local steal. In 7 of 19 patients with MAP 85-90 mm Hg, parts of the injury site were only perfused in systole, but not in diastole, which we term diastolic ischemia. We conclude that acute, severe TSCI produces three pathological blood flow patterns at the injury site. Intervention to increase blood pressure may elicit potentially detrimental SCBF responses in some patients.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Traumatismos de la Médula Espinal/fisiopatología , Médula Espinal/irrigación sanguínea , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neuroimagen/métodos , Norepinefrina/farmacología , Flujo Sanguíneo Regional/efectos de los fármacos , Flujo Sanguíneo Regional/fisiología , Médula Espinal/patología , Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Vasoconstrictores/farmacología
15.
Crit Care Med ; 46(7): 1150-1157, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29629987

RESUMEN

OBJECTIVES: To characterize the effect of fever after acute, traumatic spinal cord injury on injury site metabolism and patient outcome. DESIGN: Longitudinal cohort study. In 44 patients (London cohort), we determined the effect of fever on intrathecal injury site metabolism by analyzing 1,767 hours of intraspinal pressure and 759 hours of microdialysis data. We also determined the effect of fever burden, computed for the first 2 weeks in hospital, on neurologic outcome. A distinct cohort of 33 patients (Berlin cohort) was used to independently validate the effect of fever burden on outcome. SETTING: ICUs in London and Berlin. PATIENTS: Seventy-seven patients with acute, traumatic spinal cord injuries. INTERVENTIONS: In the London patients, a pressure probe and a microdialysis catheter were placed intradurally on the surface of the injured cord for up to a week. MEASUREMENTS AND MAIN RESULTS: Fever (> 37.5°C) occurs frequently (37% of the time) after spinal cord injury. High-grade fever (≥ 38°C) was associated with significantly more deranged metabolite levels than normothermia (36.5-37.5°C), that is, lower tissue glucose (median 2.0 vs 3.3 mM), higher lactate (7.8 vs 5.4 mM), higher glutamate (7.8 vs 6.4 µM), and higher lactate-to-pyruvate ratio (38.9 vs 29.3). High-grade fever was particularly detrimental on injury site metabolism when the peripheral leukocyte count was high. In the London and Berlin cohorts, high fever burden correlated with less neurologic improvement. CONCLUSIONS: Early after spinal cord injury, fever is associated with more deranged injury site metabolism than normothermia and worse prognosis.


Asunto(s)
Fiebre/complicaciones , Recuperación de la Función , Traumatismos de la Médula Espinal/metabolismo , Adulto , Temperatura Corporal , Fiebre/metabolismo , Glucosa/metabolismo , Humanos , Unidades de Cuidados Intensivos , Estudios Longitudinales , Masculino , Microdiálisis , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/complicaciones
16.
BMC Anesthesiol ; 17(1): 139, 2017 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-29037157

RESUMEN

BACKGROUNDS: Impairment of gastrointestinal (GI) motility is an undesirable but inevitable consequence of surgery. This prospective randomised controlled study tested the hypothesis that postoperative thoracic epidural analgesia (TEA) with ropivacaine or a combination of ropivacaine and morphine accelerates postoperative GI function and shortens the duration of postoperative ileus following major thoracic surgery compared to intravenous (IV) morphine. METHODS: Thirty patients scheduled for major thoracic surgery were randomised to three groups. All patients had bowel motility assessments 1 week preoperatively. All patients received general anaesthesia. Group Ep-R received TEA with ropivacaine; group Ep-RM received TEA with ropivacaine and morphine and group IV-M received IV morphine via patient controlled analgesia pump (PCA). Bowel motility was assessed by clinical examination in addition to oro-ceacal transit time (OCTT) on the first and third postoperative days and colonic transit time (CTT). RESULTS: Overall the OCTT demonstrated a 2.5-fold decrease in bowel motility on the first postoperative day. The OCTT test revealed statistically significant differences between all groups (Ep-R vs Ep-RM, p = 0.43/Ep-R vs IV-M, p = 0.039 / Ep-RM vs IV-M, p < 0.001). Also, very significant differences were found in the OCCT test between days (Ep-R vs Ep-RM, p < 0.001/Ep-R vs IV-M, p < 0.001 / Ep-RM vs IV-M, p = 0.014). There were no significant differences in the CTT test or the clinical signs between groups. However, 70% of the patients in the Ep-R group and 80% in the Ep-RM group defecated by the third day compared to only 10% in the IV-M group, (p = 0.004). CONCLUSIONS: Objective tests demonstrated the delayed motility of the whole GI system postoperatively following thoracic surgery. They also demonstrated that continuous epidural analgesia with or without morphine improved GI motility in comparison to intravenous morphine. These differences were more pronounced on the third postoperative day. TRIAL REGISTRATION: ISRCTN number: 11953159 , retrospectively registered on 20/03/2017.


Asunto(s)
Analgesia Epidural/métodos , Analgésicos Opioides/administración & dosificación , Motilidad Gastrointestinal/efectos de los fármacos , Morfina/administración & dosificación , Complicaciones Posoperatorias/diagnóstico , Procedimientos Quirúrgicos Torácicos/efectos adversos , Adulto , Anciano , Anciano de 80 o más Años , Analgesia Epidural/tendencias , Analgesia Controlada por el Paciente/métodos , Analgesia Controlada por el Paciente/tendencias , Femenino , Motilidad Gastrointestinal/fisiología , Humanos , Masculino , Persona de Mediana Edad , Manejo del Dolor/métodos , Manejo del Dolor/tendencias , Dimensión del Dolor/efectos de los fármacos , Dimensión del Dolor/métodos , Dimensión del Dolor/tendencias , Proyectos Piloto , Complicaciones Posoperatorias/etiología , Estudios Prospectivos , Estudios Retrospectivos , Procedimientos Quirúrgicos Torácicos/tendencias , Resultado del Tratamiento
17.
J Neurochem ; 139(5): 700-705, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27664973

RESUMEN

The management of patients having traumatic spinal cord injury would benefit from understanding and monitoring of spinal cord metabolic states. We hypothesized that the metabolism of the injured spinal cord could be visualized using Kohonen self-organizing maps. Sixteen patients with acute, severe spinal cord injuries were studied. Starting within 72 h of the injury, and for up to a week, we monitored the injury site hourly for tissue glucose, lactate, pyruvate, glutamate, and glycerol using microdialysis as well as intraspinal pressure and spinal cord perfusion pressure. A Kohonen map, which is an unsupervised, self-organizing topology-preserving neural network, was used to analyze 3366 h of monitoring data. We first visualized the different spinal cord metabolic states. Our data show that the injured cord assumes one or more of four metabolic states. On the basis of their metabolite profiles, we termed these states near-normal, ischemic, hypermetabolic, and distal. We then visualized how patients' intraspinal pressure and spinal cord perfusion pressure affect spinal cord metabolism. This revealed that for more than 60% of the time, spinal cord metabolism is patient-specific; periods of high intraspinal pressure or low perfusion pressure are not associated with specific spinal cord metabolic patterns. Finally, we determined relationships between spinal cord metabolism and neurological status. Patients with complete deficits have shorter periods of near-normal spinal cord metabolic states (7 ± 4% vs. 58 ± 12%, p < 0.01, mean ± standard error) and more variable injury site metabolic responses (metabolism spread in 70 ± 11 vs. 40 ± 6 hexagons, p < 0.05), compared with patients who have incomplete neurological deficits. We conclude that Kohonen maps allow us to visualize the metabolic responses of the injured spinal cord and may thus aid us in treating patients with acute spinal cord injuries.


Asunto(s)
Metaboloma/fisiología , Microdiálisis/métodos , Traumatismos de la Médula Espinal/diagnóstico , Traumatismos de la Médula Espinal/metabolismo , Adulto , Anciano , Vértebras Cervicales , Femenino , Estudios de Seguimiento , Humanos , Unidades de Cuidados Intensivos , Vértebras Lumbares , Masculino , Persona de Mediana Edad , Vértebras Torácicas , Adulto Joven
18.
Ann Neurol ; 80(4): 522-31, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27463064

RESUMEN

OBJECTIVE: There is lack of monitoring from the injury site to guide management of patients with acute traumatic spinal cord injury. Here, we describe a bedside microdialysis monitoring technique for optimizing spinal cord perfusion and drug delivery at the injury site. METHODS: Fourteen patients were recruited within 72 hours of severe spinal cord injury. We inserted intradurally at the injury site a pressure probe, to monitor continuously spinal cord perfusion pressure, and a microdialysis catheter, to monitor hourly glycerol, glutamate, glucose, lactate, and pyruvate. The pressure probe and microdialysis catheter were placed on the surface of the injured cord. RESULTS: Microdialysis monitoring did not cause serious complications. Spinal cord perfusion pressure 90 to 100mm Hg and tissue glucose >4.5mM minimized metabolic derangement at the injury site. Increasing spinal cord perfusion pressure by ∼10mm Hg increased the entry of intravenously administered dexamethasone at the injury site 3-fold. INTERPRETATION: This study determined the optimum spinal cord perfusion pressure and optimum tissue glucose concentration at the injury site. We also identified spinal cord perfusion pressure as a key determinant of drug entry into the injured spinal cord. Our findings challenge current guidelines, which recommend maintaining mean arterial pressure at 85 to 90mm Hg for a week after spinal cord injury. We propose that future drug trials for spinal cord injury include pressure and microdialysis monitoring to optimize spinal cord perfusion and maximize drug delivery at the injury site. Ann Neurol 2016;80:522-531.


Asunto(s)
Antiinflamatorios/farmacocinética , Presión Sanguínea/fisiología , Dexametasona/farmacocinética , Glucosa/metabolismo , Microdiálisis/métodos , Monitoreo Fisiológico/métodos , Guías de Práctica Clínica como Asunto , Traumatismos de la Médula Espinal , Adulto , Anciano , Antiinflamatorios/administración & dosificación , Dexametasona/administración & dosificación , Femenino , Humanos , Masculino , Persona de Mediana Edad , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/fisiopatología , Adulto Joven
19.
Acta Neurochir Suppl ; 122: 323-8, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27165930

RESUMEN

Intracranial pressure (ICP) is routinely measured in patients with severe traumatic brain injury (TBI). We describe a novel technique that allowed us to monitor intraspinal pressure (ISP) at the injury site in 14 patients who had severe acute traumatic spinal cord injury (TSCI), analogous to monitoring ICP after brain injury. A Codman probe was inserted subdurally to measure the pressure of the injured spinal cord compressed against the surrounding dura. Our key finding is that it is feasible and safe to monitor ISP for up to a week in patients after TSCI, starting within 72 h of the injury. With practice, probe insertion and calibration take less than 10 min. The ISP signal characteristics after TSCI were similar to the ICP signal characteristics recorded after TBI. Importantly, there were no associated complications. Future studies are required to determine whether reducing ISP improves neurological outcome after severe TSCI.


Asunto(s)
Monitoreo Fisiológico , Presión , Traumatismos de la Médula Espinal/fisiopatología , Médula Espinal/irrigación sanguínea , Espacio Subdural , Adolescente , Adulto , Anciano , Presión Arterial , Vértebras Cervicales/cirugía , Estudios de Factibilidad , Femenino , Humanos , Presión Intracraneal , Laminectomía , Masculino , Persona de Mediana Edad , Tornillos Pediculares , Traumatismos de la Médula Espinal/complicaciones , Fracturas de la Columna Vertebral/complicaciones , Fracturas de la Columna Vertebral/cirugía , Fusión Vertebral , Vértebras Torácicas/cirugía , Adulto Joven
20.
Acta Neurochir Suppl ; 122: 335-8, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27165932

RESUMEN

Following a traumatic brain injury (TBI), intracranial pressure (ICP) increases, often resulting in secondary brain insults. After a spinal cord injury, here the cord may be swollen, leading to a local increase in intraspinal pressure (ISP). We hypothesised that waveform analysis methodology similar to that used for ICP after TBI may be applicable for the monitoring of patients with spinal cord injury.An initial cohort of 10 patients with spinal cord injury, as presented by the first author at a meeting in Cambridge in May 2012, were included in this observational study. The whole group (18 patients) was recently presented in the context of clinically oriented findings (Werndle et al., Crit Care Med, 42(3):646-655, 2014, PMID: 24231762). Mean pressure, pulse and respiratory waveform were analysed along slow vasogenic waves.Slow, respiratory and pulse components of ISP were characterised in the time and frequency domains. Mean ISP was 22.5 ± 5.1, mean pulse amplitude 1.57 ± 0.97, mean respiratory amplitude 0.65 ± 0.45 and mean magnitude of slow waves (a 20-s to 3-min period) was 3.97 ± 3.1 (all in millimetres of mercury). With increasing mean ISP, the pulse amplitude increased in all cases. This suggests that the ISP signal is of a similar character to ICP recorded after TBI. Therefore, the methods of ICP analysis can be helpful in ISP analysis.


Asunto(s)
Presión , Traumatismos de la Médula Espinal/fisiopatología , Espacio Subdural , Estudios de Cohortes , Humanos , Presión Intracraneal , Monitoreo Fisiológico , Análisis de la Onda del Pulso , Respiración , Canal Medular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...